DIGITAL SIGNAL PROCESSING LABORATORY Assignment 5

1. Linear Phase Finite Impulse Response (FIR) Frequency Selective Filters

A causal FIR filter which has a real impulse response will have linear phase if and only if the filter has an impulse response of the form

 $h[n] = h[N-1-n]$ $0 \le n \le N-1$.

An FIR filter whose impulse response satisfies this criterion, has a frequency response of the form

$$
H(e^{j\omega}) = H(\omega)e^{-j\frac{N-1}{2}\omega}
$$

where $H(\omega)$ is a real function and *N* is the length of the impulse response. If the impulse response is shifted such that $h_s[n] = h[n+(N-1)/2]$, then

$$
h_S(n) = \begin{cases} h_S(-n) & -\frac{N-1}{2} \le n \le \frac{N-1}{2} \\ 0 & \text{otherwise} \end{cases}
$$

where $n \in I$ for *N* odd and $n \in I/2$ (integers divided by 2) for *N* even. Using the time shifting theorem, the frequency response, $H_s(e^{j\omega})$, of the shifted impulse response, $h_s[n]$, can be written as

$$
H_s(e^{j\omega}) = e^{j\frac{N-1}{2}\omega}H(e^{j\omega}) = e^{j\frac{N-1}{2}\omega}H(\omega)e^{-j\frac{N-1}{2}\omega} = H(\omega).
$$

Since $H_s(e^{j\omega}) = H(\omega)$, $H_s(e^{j\omega})$ is a real function, and the phase of $H_s(e^{j\omega})$ equals zero. Thus H(ω) is often called the zero phase frequency response or amplitude response. Given a desired

zero phase frequency response, $H_d(e^{j\omega})$, its corresponding impulse response, $h_d[n]$, can be calculated from the inverse discrete time Fourier transform,

$$
h_d[n] = \frac{1}{2\pi} \int_{0}^{\pi} H_d(\omega) e^{j\omega n} d\omega,
$$

,

where $n \in I$ for *N* odd and $n \in I/2$ (integers divided by 2) for *N* even. If

$$
H_d(\omega) = \begin{cases} 1 & \omega_l \le |\omega| \le \omega_u \\ 0 & otherwise \end{cases}
$$

then

$$
h_d[n] = \frac{\sin[\omega_u n] - \sin[\omega_l n]}{\pi n}
$$

and $h_d[n] = h_d[-n]$. In general, the impulse response, $h_d[n]$, is infinitely long. One method used to obtain an FIR filter from $h_d[n]$ is to multiply $h_d[n]$ by a finite duration sequence, $w[n]$, called a window. Therefore the resulting impulse response, $h_r[n]$, is a finite length sequence of the form

$$
h_r[n] = h_d[n]w[n] = \begin{cases} h_d[n]w[n] & |n| \le \frac{N-1}{2} \\ 0 & |n| > \frac{N-1}{2} \end{cases}
$$

To guarantee that the frequency response, $H(\omega)$, of the resulting impulse response, $h_r[n]$, is real and has zero phase, the window sequence must have the form

$$
w[n] = w[-n]
$$

where $n \in \mathbb{I}$ for *N* odd and $n \in \mathbb{I}/2$ (integers divided by 2) for *N* even. The following are examples of such windows.

Rectangular Window Bartlett or Triangular Window Hanning Window Hamming Window Blackman Window $w[n] = 0.42 + 0.5 \cos \left[\frac{2 \pi n}{N} \right] + 0.08 \cos \left[\frac{4 \pi n}{N} \right] \qquad |n| \leq \frac{N-1}{2}$ $N-1$ ^{$N-1$} $N-1$ ^{$N-1$} 2 $2\pi n \Big|_{0.08 \text{ cm}}$ $4\pi n$ $\left[\frac{N-1}{N-1}\right]$ + 0.08 COS $\left[\frac{N-1}{N-1}\right]$ $\left| \begin{array}{cc} 0.08 \cos \theta & 4 \pi n \\ 0.08 \cos \theta & \cos \theta \end{array} \right|$ $\left|\frac{1008 \cos \left(\frac{100}{N-1}\right)}{N-1}\right|$ $|n| \leq \frac{100}{2}$ $4\pi n$ $N-1$ $N-1$ $N-1$ 2 $4\pi n$ $\left| \begin{array}{c} 4\pi n \\ \end{array} \right|$ $\lfloor \overline{N-1} \rfloor$ $|n| \leq \frac{2}{2}$ $\lfloor k \rfloor \leq N-1$ $|n| \leq \frac{N+1}{2}$ $w[n] = 0.54 + 0.46 \cos \left(\frac{2 \pi n}{N}\right)$ $|n| \leq \frac{N-1}{2}$ $N-1$ $N-1$ 2 $2\pi n$ $\left| \right.$ $N-1$ $\lfloor \overline{N-1} \rfloor$ $\lfloor l \rfloor \leq \frac{1}{2}$ $\left| \right|$ $\left| \right| \leq N-1$ $|n| \leq \frac{n+1}{2}$ *N* −1 2 a set of \sim 3 a set of \sim $w[n] = \frac{1}{2} + \frac{1}{2} \cos \left(\frac{2\pi n}{N}\right)$ $|n| \le \frac{N}{2}$ $\frac{1}{2} + \frac{1}{2} \cos \left(\frac{2\pi n}{N}\right) \qquad |n| \leq \frac{N-1}{2}$ 2 2 $[N-1]$ $[1 - 2$ $2 \begin{bmatrix} N-1 \end{bmatrix}$ $1 \begin{bmatrix} 2 \end{bmatrix}$ $\cos\left[\frac{2\pi n}{l}\right]$ $|n| \leq \frac{N-1}{2}$ $N-1$] $N-1$ 2 $\begin{bmatrix} 2\pi n \\ \end{bmatrix}$ $\begin{bmatrix} N-1 \\ \end{bmatrix}$ $\lfloor \overline{N-1} \rfloor$ $|n| \leq \frac{2}{2}$ $\lfloor N-1 \rfloor$ $|n| \leq \frac{n+1}{2}$ *N* −1 2 a set of \sim 3 a set of \sim $w[n] = \begin{cases} N-1 & 2 \end{cases}$ $2n$ $N-1$ $N-1$ 2 $2N-3$ $- \frac{N-1}{2} \le n \le 0$ 2 \sim $\leq n \leq 0$ $1 - \frac{2n}{N}$ $0 \le n \le \frac{N-1}{2}$ $N-1$ 2 $0 \leq n \leq \frac{1}{2}$ *N* − 1 2 a set of \sim 2 a set of \sim 3 a set of \sim $\begin{array}{c} \mid 2n \quad \mid \\ \mid N-1 \end{array}$ $\begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$ $\frac{1}{N-1}$ + 1 $\lfloor N-1 \rfloor$ $1-\frac{2n}{n}$ $0 \le n \le \frac{N}{n}$ $w[n] = 1$ $|n| \le \frac{N-1}{2}$ *N* −1 2 a set of \sim 3 a set of \sim

To obtain a causal FIR filter with impulse response, *h*[*n*], from the noncausal FIR filter with impulse response, $h_r[n]$, let

$$
h[n] = h_r \left[n - \frac{N-1}{2} \right].
$$

The resulting filter will have a frequency response, $H(e^{j\omega})$, where $H_s(e^{j\omega}) = e^{-j\frac{N-1}{2}\omega}H(\omega)$.

N −1

2 a set of \sim 3 a set of \sim

Exercises

- 1. Modify your MATLAB function, **FIRdesign**, so that it can calculate even and odd length impulse responses.
- 2. Consider an FIR filter which minimizes the mean square error between the desired zero phase frequency response, $H_d(\omega)$, and the filter's zero phase frequency response, $H(\omega)$, where

 $H_d(\omega) = \begin{cases} 1 & \text{if } \omega = |\omega| = 0.666 \end{cases}$ 1 $0.4\pi \leq |\omega| \leq 0.6\pi$ 0 *otherwise* $\begin{array}{ccc} |1 & 0.4\pi \leq |\omega| \leq 0.6\pi \end{array}$ $\begin{cases} 0 & \text{if } 1 \leq 1 \leq n \leq 1 \end{cases}$ $[0$ otherwise

Determine an impulse response, $h[n]$, of a causal linear phase FIR filter which satisfies this criterion. Let $h[n]$ have the lengths $N = 55$ and $N = 100$.

- i) Using **stem**, plot *h*[*n*].
- ii) If you used one of the above windows, indicate which window, and plot the magnitude of that window's frequency spectrum.
- iii) Plot the magnitude of the filter's frequency response.
- iv) Give an expression as a function of ω for filter's phase response.
- 3. Write MATLAB functions called **bartlett**, **hanning2**, **hamming2** and **blackman** which generate Bartlett, Hanning, Hamming and Blackman windows respectively.
	- i) For each of the windows, plot $w[n]$ for $N = 55$ and $N = 100$.
	- ii) Plot the magnitude of the frequency spectrum of each of the windows when $N = 100$.

Compare your **hanning2** and **hamming2** functions to Matlab's built in functions, **hanning** and **hamming**.

4. Using each of the window functions your wrote in Exercise 3, design a series of causal linear phase FIR filters of lengths $N = 55$ and $N = 100$ to a approximate the desired frequency response, $H_d(e^{j\omega})$, where

 $H_d(e^{j\omega}) = \begin{cases} 1 & 0.4\pi \leq |\omega| \leq 0.6\pi \\ 0 & \text{otherwise} \end{cases}$ 1 $0.4\pi \leq |\omega| \leq 0.6\pi$ 0 *otherwise* $\begin{array}{ccc} |1 & 0.4\pi \leq |\omega| \leq 0.6\pi \end{array}$ $\left\{ \begin{array}{ccc} & & & 1 \\ 0 & & 1 \end{array} \right.$ $[0$ otherwise

- i) Plot the magnitude of the filter's frequency response.
- ii) Give an expression as a function of ω for filter's phase response.
- 5. Perform a pole zero plot of one of your filter designs where $N = 55$.